Q1. Similarity Between Snake River and Lower Columbia River Populations

Uncertainties/Issues

• if stocks in two subregions have similar survival in estuary / ocean, then:

Regional differences in overall survival (R/S) mainly due to migratory corridor conditions and productivity differences.

Extra mortality unique to Snake River stocks is smaller.

• if stocks in two subregions have different survival in estuary / ocean, then:

Differing sensitivities to climate/ocean conditions may play greater role in regional differences in overall survival.

Extra mortality unique to Snake River stocks is larger.

Index stocks of spring/summer chinook salmon

Implementation

Upstream and	H1. Common	H2. Common
downstream	effects included	effects excluded
stocks have:	(Delta approach)	(Alpha approach)
similar	estuarine / ocean	
	survival	
different	passage survival	passage survival
	productivity	productivity
	carrying capacity	carrying capacity
		estuarine / ocean
		survival
		sensitivity to
		changes in
		climate regime

Implications:

- Alpha approach shows step change in extra mortality of Snake River stocks, while Delta shows more gradual change (similar under both CRiSP and FLUSH)
- with Delta approach, Snake River stocks have higher projected escapements, and higher probabilities of survival and recovery under all actions (vs. Alpha)

Effects on NMFS Standards

Evidence related to Delta approach (common effects)¹:

- upstream and downstream stocks do show common fluctuations over time
- Ohds: patterns of changes in escapement in upstream and downstream stocks; common year effect
- upstream and downstream stocks all arrive in estuary around late April and May, share common estuarine and ocean conditions
 - ⇒coincident timing may no longer occur due to transportation
- early life history has major impacts on spring-summer chinook (little harvest; adult returns predicted by jacks) ⇒ ratio of adults: jacks changes from year to year
- Delta approach fits spawner-recruit and SAR data "decisively" better than Alpha approach, regardless of which passage model used
 - ⇒Delta approach based on S-R data (not independent)
- wild, Fraser River spring-summer chinook (12 stocks over 350 mile stretch) showed strong common patterns in escapement from 1974 to 1991
 - ⇒major changes in harvest affected pattern

¹ WOE report: pgs. 29 to 33; 52 to 70.

Evidence related to Alpha approach²:

- two stock groups are genetically distinct and considered by NMFS to be in different Evolutionarily Significant Units
 - ⇒ genetically distinct stocks often show common patterns of survival
- greater distances and elevations that Snake River fish must traverse could lead to different physiology and endocrine systems (Saila, SRP)
- Snake River stocks more likely to return at age 5 than age 4, giving ocean mortality more time to affect fish ⇒in sockeye, year of ocean entry has stronger effect on survival than brood year
- coded wire tag data suggest ocean distributions of Snake River chinook quite possibly different from lower Columbia stocks; Snake River stocks more likely to be found in California current, with worse conditions

⇒same data can be analyzed to show no difference

 \Rightarrow CWT evidence has low power; should be discarded

⇒survival could be similar even if distributions aren't

² WOE report: pgs. 29 to 33; 52 to 70.

• Two analyses of CWT data:

Weber et al. 1997 (Prelim. Dec. Analysis):

